6,647 research outputs found

    Systems simulations supporting NASA telerobotics

    Get PDF
    Two simulation and analysis environments have been developed to support telerobotics research at the Langley Research Center. One is a high-fidelity, nonreal-time, interactive model called ROBSIM, which combines user-generated models of workspace environment, robots, and loads into a working system and simulates the interaction among the system components. Models include user-specified actuator, sensor, and control parameters, as well as kinematic and dynamic characteristics. Kinematic, dynamic, and response analyses can be selected, with system configuration, task trajectories, and arm states displayed using computer graphics. The second environment is a real-time, manned Telerobotic Systems Simulation (TRSS) which uses the facilities of the Intelligent Systems Research Laboratory (ISRL). It utilizes a hierarchical structure of functionally distributed computers communicating over both parallel and high-speed serial data paths to enable studies of advanced telerobotic systems. Multiple processes perform motion planning, operator communications, forward and inverse kinematics, control/sensor fusion, and I/O processing while communicating via common memory. Both ROBSIM and TRSS, including their capability, status, and future plans are discussed. Also described is the architecture of ISRL and recent telerobotic system studies in ISRL

    Solid State Physics

    Get PDF
    Contains reports on six research projects

    Dynamics of monatomic liquids

    Full text link
    We present a theory of the dynamics of monatomic liquids built on two basic ideas: (1) The potential surface of the liquid contains three classes of intersecting nearly-harmonic valleys, one of which (the ``random'' class) vastly outnumbers the others and all whose members have the same depth and normal mode spectrum; and (2) the motion of particles in the liquid can be decomposed into oscillations in a single many-body valley, and nearly instantaneous inter-valley transitions called transits. We review the thermodynamic data which led to the theory, and we discuss the results of molecular dynamics (MD) simulations of sodium and Lennard-Jones argon which support the theory in more detail. Then we apply the theory to problems in equilibrium and nonequilibrium statistical mechanics, and we compare the results to experimental data and MD simulations. We also discuss our work in comparison with the QNM and INM research programs and suggest directions for future research.Comment: 53 pages, 16 figures. Differs from published version in using American English spelling and grammar (published version uses British English

    Superconducting p-branes and Extremal Black Holes

    Get PDF
    In Einstein-Maxwell theory, magnetic flux lines are `expelled' from a black hole as extremality is approached, in the sense that the component of the field strength normal to the horizon goes to zero. Thus, extremal black holes are found to exhibit the sort of `Meissner effect' which is characteristic of superconducting media. We review some of the evidence for this effect, and do present new evidence for it using recently found black hole solutions in string theory and Kaluza-Klein theory. We also present some new solutions, which arise naturally in string theory, which are non-superconducting extremal black holes. We present a nice geometrical interpretation of these effects derived by looking carefully at the higher dimensional configurations from which the lower dimensional black hole solutions are obtained. We show that other extremal solitonic objects in string theory (such as p-branes) can also display superconducting properties. In particular, we argue that the relativistic London equation will hold on the worldvolume of `light' superconducting p-branes (which are embedded in flat space), and that minimally coupled zero modes will propagate in the adS factor of the near-horizon geometries of `heavy', or gravitating, superconducting p-branes.Comment: 22 pages, 2 figure

    Astrometry with Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator RR Lyrae

    Get PDF
    We present an absolute parallax and relative proper motion for the fundamental distance scale calibrator, RR Lyr. We obtain these with astrometric data from FGS 3, a white-light interferometer on HST. We find πabs=3.82±0.2\pi_{abs} = 3.82 \pm 0.2 mas. Spectral classifications and VRIJHKT2_2M and DDO51 photometry of the astrometric reference frame surrounding RR Lyr indicate that field extinction is low along this line of sight. We estimate =0.07\pm0.03 for these reference stars. The extinction suffered by RR Lyr becomes one of the dominant contributors to the uncertainty in its absolute magnitude. Adopting the average field absorption, =0.07 \pm 0.03, we obtain M_V^{RR} = 0.61 ^{-0.11}_{+0.10}. This provides a distance modulus for the LMC, m-M = 18.38 - 18.53^{-0.11}_{+0.10} with the average extinction-corrected magnitude of RR Lyr variables in the LMC, , remaining a significant uncertainty. We compare this result to more than 80 other determinations of the distance modulus of the LMC.Comment: Several typos corrected. To appear in The Astronomical Journal, January 200

    Scanning-probe spectroscopy of semiconductor donor molecules

    Full text link
    Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages, 3 figures, 5 supplementary figure

    Infrared Properties of Cataclysmic Variables from 2MASS: Results from the 2nd Incremental Data Release

    Full text link
    Because accretion-generated luminosity dominates the radiated energy of most cataclysmic variables, they have been ``traditionally'' observed primarily at short wavelengths. Infrared observations of cataclysmic variables contribute to the understanding of key system components that are expected to radiate at these wavelengths, such as the cool outer disk, accretion stream, and secondary star. We have compiled the J, H, and Ks photometry of all cataclysmic variables located in the sky coverage of the 2 Micron All Sky Survey (2MASS) 2nd Incremental Data Release. This data comprises 251 systems with reliably identified near-IR counterparts and S/N > 10 photometry in one or more of the three near-IR bands.Comment: 2 pages, including 1 figure. To appear in the proceedings of The Physics of Cataclysmic Variables and Related Objects, Goettingen, Germany. For our followup ApJ paper (in press), also see http://www.ctio.noao.edu/~hoard/research/2mass/index.htm

    Lepton flavour violation in the MSSM

    Full text link
    We derive new constraints on the quantities delta_{XY}^{ij}, X,Y=L,R, which parametrise the flavour-off-diagonal terms of the charged slepton mass matrix in the MSSM. Considering mass and anomalous magnetic moment of the electron we obtain the bound |delta^{13}_{LL} delta^{13}_{RR}|<0.1 for tan beta=50, which involves the poorly constrained element delta^{13}_{RR}. We improve the predictions for the decays tau -> mu gamma, tau -> e gamma and mu -> e gamma by including two-loop corrections which are enhanced if tan beta is large. The finite renormalisation of the PMNS matrix from soft SUSY-breaking terms is derived and applied to the charged-Higgs-lepton vertex. We find that the experimental bound on BR(tau -> e gamma) severely limits the size of the MSSM loop correction to the PMNS element U_{e3}, which is important for the proper interpretation of a future U_{e3} measurement. Subsequently we confront our new values for delta^{ij}_{LL} with a GUT analysis. Further, we include the effects of dimension-5 Yukawa terms, which are needed to fix the Yukawa unification of the first two generations. If universal supersymmetry breaking occurs above the GUT scale, we find the flavour structure of the dimension-5 Yukawa couplings tightly constrained by mu -> e gamma.Comment: 37 pages, 15 figures; typo in Equation (35) and (49) correcte

    The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    Get PDF
    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry S4S_4 that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can reproduce the quark masses and the CKM matrix. In the lepton sector, we reproduce the charged lepton masses, including bottom-tau unification and the Georgi-Jarlskog relation as well as the two known angles of the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse hierarchy, and only allowing the neutrino parameters to spread into a range of values between λ2\lambda^{-2} and λ2\lambda^2, with λ0.2\lambda\simeq0.2. Finally, our model suggests that the reactor mixing angle is close to its current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for publication in JHE

    Patterns of analgesic use, pain and self-efficacy: a cross-sectional study of patients attending a hospital rheumatology clinic

    Get PDF
    Background: Many people attending rheumatology clinics use analgesics and non-steroidal anti-inflammatories for persistent musculoskeletal pain. Guidelines for pain management recommend regular and pre-emptive use of analgesics to reduce the impact of pain. Clinical experience indicates that analgesics are often not used in this way. Studies exploring use of analgesics in arthritis have historically measured adherence to such medication. Here we examine patterns of analgesic use and their relationships to pain, self-efficacy and demographic factors. Methods: Consecutive patients were approached in a hospital rheumatology out-patient clinic. Pattern of analgesic use was assessed by response to statements such as 'I always take my tablets every day.' Pain and self-efficacy (SE) were measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Arthritis Self-Efficacy Scale (ASES). Influence of factors on pain level and regularity of analgesic use were investigated using linear regression. Differences in pain between those agreeing and disagreeing with statements regarding analgesic use were assessed using t-tests. Results: 218 patients (85% of attendees) completed the study. Six (2.8%) patients reported no current pain, 26 (12.3%) slight, 100 (47.4%) moderate, 62 (29.4%) severe and 17 (8.1%) extreme pain. In multiple linear regression self efficacy and regularity of analgesic use were significant (p < 0.01) with lower self efficacy and more regular use of analgesics associated with more pain. Low SE was associated with greater pain: 40 (41.7%) people with low SE reported severe pain versus 22 (18.3%) people with high SE, p < 0.001. Patients in greater pain were significantly more likely to take analgesics regularly; 13 (77%) of those in extreme pain reported always taking their analgesics every day, versus 9 (35%) in slight pain. Many patients, including 46% of those in severe pain, adjusted analgesic use to current pain level. In simple linear regression, pain was the only variable significantly associated with regularity of analgesic use: higher levels of pain corresponded to more regular analgesic use (p = 0.003). Conclusion: Our study confirms that there is a strong inverse relationship between self-efficacy and pain severity. Analgesics are often used irregularly by people with arthritis, including some reporting severe pain
    corecore